DHERST

The National Institute of Higher Education,

SURVEY ON THE

PUBLIC PERCEPTION

OF SCIENCE

2013

Copyright © January 2013 by NIHERST

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, or stored in a database or retrieval system without the prior written permission of NIHERST.

NIHERST
Science and Technology Statistical Unit \#77 Eastern Main Road
St. Augustine
Trinidad and Tobago
Tel: 868~663~9320
Fax: 868~645~5007
e~mail: stresearch@niherst.gov.tt website: http://niherst.gov.tt

Foreword

In this publication, the National Institute of Higher Education, Research, Science and Technology (NIHERST) presents the results of the Survey on the Public Perception of Science, 2012. This survey is the second of its kind to be conducted by NIHERST as a similar study was undertaken in 2005. This undertaking was designed to provide empirical data on the level of scientific awareness and literacy of the population of Trinidad and Tobago and has generated essential indicators for comparison with similar studies.

In general, the survey results revealed no significant change in the public's perception of science in 2012 compared to 2005.

The study focussed on the sources, interest and consumption of information and the popularisation of science and scientific research in Trinidad and Tobago. In addition, data on the demographic and socio economic characteristics of respondents were also captured and included in this publication.

In keeping with NIHERST's support for the overall development of science and technology in Trinidad and Tobago, the empirical results of this study will measure changes in attitudes towards science overtime and also facilitate and inform the development of science policy, communication and popularisation.

NIHERST wishes to thank members of households who willingly provided the data collated in this report and also acknowledge the assistance of the Central Statistical Office.

Mrs. Maureen Manchouck
President

Foreword iii
Executive Summary xi
Methodology xv
Table 1: Respondents by Gender within Age Groups 1
Chart 1: Respondents by Gender and Age Groups 1
Table 2: Respondents by Age Groups within Gender 2
Table 3: Respondents by Educational Attainment within Age Groups 3
Chart 2: Respondents by Educational Attainment ~ All Ages 3
Table 4: Respondents by Age Groups within Educational Attainment 4
Table 5: Respondents by Employment Status and Age Groups 5
Chart 3: Respondents by Employment Status ~ All Ages 5
Table 6: Household Size by Gross Monthly Income 6
Chart 4: Household Size by Gross Monthly Income ~ All Households 6
Table 7: Interest in Topical Areas 7
Chart 5: Interest in Topical Areas 7
Table 8: Interest in Science by Age Groups 8
Chart 6: Interest in Science by Age Groups 8
Table 9: Interest in Science, 2005 and 2012 9
Table 10: Informed about Science and Technology by Age Groups 10
Chart 7: Informed about Science and Technology ~ All Ages 10
Table 11: Comparison of Respondents Informed about Science and Technology, 11 2005 and 2012
Table 12: Informed about Science and Technology by Educational Attainment 12
Chart 8: Informed about Science and Technology by Educational Attainment 12
Table 13: Reasons for Finding out about Scientific Issues by Age Groups 13
Chart 9: Reasons for Finding out about Scientific Issues ~ All Ages 13
Table 14: Interest in Areas of Science and Technology 14
Chart 10: Interest in Areas of Science and Technology 14
Table 15: Impact of Scientific Knowledge on Decision Making by Age Groups 15
Chart 11: Impact of Scientific Knowledge on Decision Making All Ages 15
Table 16: Effect of Science and Technology on Work Opportunities 16 by Employment Status
Chart 12: Effect of Science and Technology on Work Opportunities 16
Table 17: Who Benefits from Scientific Developments by Educational Attainment 17
Chart 13: Who Benefits from Scientific Developments ~ All Educational Attainment 17
Table 18: Agreement with Statements on Science and Technology 18
Chart 14: Agreement with Statements on Science and Technology 19
Table 19: Knowledge of Science 20
Chart 15: Knowledge of Science 21
Table 20: Source of Information on Science by Age Group 22
Chart 16: Source of Information on Science ~ All Ages 22
Table 21: Enough Media Information on Science by Age Groups 23
Chart 17: Enough Media Information on Science ~ All Ages 23
Table 22: Reading of Newspapers by Age Groups 24
Chart 18: Reading of Newspaper by Age Groups 24
Table 23: Reading of Newspapers by Educational Attainment 25
Chart 19: Reading of Newspapers by Educational Attainment 25
Table 24: Listening to Radio by Age Groups 26
Chart 20: Listening to Radio by Age Groups 26
Table 25: Television Viewing by Age Groups 27
Chart 21: Television Viewing by Age Groups 27
Table 26: Accessing Scientific Information by Age Group and Type of Media 28
Chart 22: Accessing Scientific Information by Media Type ~ All Ages 29
Table 27: Accessing Scientific Information by Educational Attainment and 30 Type of Media
Chart 23: Accessing Scientific Information from Newspapers by 31 Educational Attainment
Chart 24: Accessing Scientific Information from Radio by Educational Attainment 31
Chart 25: Accessing Scientific Information from Television by 32Educational Attainment
Chart 26: Accessing Scientific Information from Internet by 32 Educational Attainment
Table 28: Reading of Books on Science by Age Groups 33
Table 29: Reading of Books on Science by Educational Attainment 34
Chart 28: Reading of Books on Science by Educational Attainment 34
Table 30: Reading of Science Magazines by Age Groups 35
Chart 29: Reading of Science Magazines ~ All Ages 35
Table 31: Reading of Science Magazines by Educational Attainment 36
Chart 30: Reading of Science Magazines by Educational Attainment 36
Table 32: Quality of Science and Mathematics Education in Schools by 37 Age Groups
Chart 31: Quality of Science and Mathematics by Age Groups 37
Table 33: Quality of Science and Mathematics Education in Schools by 38Educational Attainment
Chart 32: Quality of Science and Mathematics Education in Schools by 38 Educational Attainment
Table 34: Read Food Labels by Age Groups 39
Chart 33: Read Food Labels by Age Groups 39
Table 35: Read Food Labels by Educational Attainment 40
Chart 34: Read Food Labels by Educational Attainment 40
Table 36: Labelling of Foods Containing Genetically Modified Organisms (GMOs) 41 by Age Groups
Chart 35: Labelling of Foods Containing Genetically Modified Organisms (GMOs) 41 ~ All Ages
Table 37: Labelling of Foods Containing GMOs by Educational Attainment 42
Table 38: Blood Type Known by Age Groups 43
Chart 36: Blood Type Known by Age Groups 43
Table 39: Blood Type Known by Educational Attainment 44
Chart 37: Blood Type Known by Educational Attainment 44
Table 40: Questions on Illness and Treatment 45
Chart 38: Questions on Illness and Treatment 45
Table 41: Causes of HIV/AIDS by Age Groups 46
Chart 39: Causes of HIV/AIDS by Age Groups 46
Table 42: Causes of HIV/AIDS by Educational Attainment 47
Chart 40: Causes of HIV/AIDS by Educational Attainment 47
Table 43: Familiarity with Selected Scientific Terms 48
Chart 41: Familiarity with Selected Scientific Terms 48
Table 44: Familiarity with the Terms Catalyst, Chlorophyll and Biodiversity by 49 Educational Attainment
Chart 42: Familiarity with the Term Catalyst by Education Attainment 50
Chart 43: Familiarity with the Term Chlorophyll by Educational Attainment 50
Chart 44: Familiarity with the Term Biodiversity by Educational Attainment 51
Table 45: Work Abroad to Become a Scientist by Educational Attainment 52
Chart 45: Work Abroad to Become a Scientist ~ All Respondents 52
Table 46: Work Abroad to Become a Scientist by Informed on 53
Science and Technology
Table 47: Scientist's Reason for Choice of Profession by Educational Attainment 54
Chart 46: Scientist's Reason for Choice of Profession 54
Table 48: Scientist's Reason for Choice of Profession by Informed on 55 Science and Technology
Table 49: Encourage Child to Pursue Scientific Career by Educational Attainment 56
Chart 47: Encourage Child to Pursue Scientific Career ~ All Respondents 56
Table 50: Name Local Scientist 57
Chart 48: Name Local Scientist ~ All Respondents 57
Table 51: Science and Technology Research in Trinidad and Tobago 58
Chart 49: Science and Technology Research in Trinidad and Tobago ~ 58 All Respondents
Table 52: Name Science and Technology Institution 59
Chart 50: Name Science and Technology Institution 59
Table 53: Usefulness of Research 60
Chart 51: Usefulness of Research 60
Table 54: Source of Science and Technology Financing 61
Chart 52: Source of Science and Technology Financing 61
Table 55: Visited NIHERST/NGC National Science Centre by Age Groups 62
Chart 53: Visited NIHERST/National Science Centre by Age Groups 62
Table 56: Visited NIHERST/NGC National Science Centre by 63 Educational Attainment
Chart 54: Visited NIHERST/NGC National Science Centre by 63 Educational Attainment
Table 57: Visited NIHERST/NGC National Science Centre by Informed on 64
Science and Technology
Table 58: Satisfied with Visit to the NIHERST/NGC National Science Centre by 65 Age Groups
Chart 55: Satisfied with Visit to the NIHERST/NGC National Science Centre 65 ~ All Ages
Table 59: Protest Actions Concerning Science and Technology 66
Table 60: Type of Protest Action 66
Chart 56: Participation in Protest Action 66
Chart 57: Important to Participation in Protest Action 67
Table 61: Main Obstacles to Participating in Issues on Science and Technology 68
Table 62: Comments on Survey by Age Groups 69
Appendix ~ Interest in S\&T Areas 70

Executive Summary

* Of the total sample of 2504 respondents, 46% were males and 54% were females. In terms of age, a relatively large proportion (34\%) of the survey respondents was 50 years and over.
* The majority of respondents (51\%) reported their highest level of educational attainment as secondary, followed by primary (27\%).
* Forty-three percent (43\%) of the respondents in 2012, expressed a high level of interest in science while 57% indicated a little or no interest.
* A substantial proportion of the survey respondents (75\%) in 2012 felt that they were informed with respect to science and technology while one quarter (25\%) considered themselves not informed; a similar pattern of response was observed in 2005. The proportion of respondents who considered themselves informed about science and technology increased in relation to educational attainment.
* The areas of science and technology that inspired a high level of interest were medicine and health (83\%), environment (72\%), agriculture (59\%) and computers and IT (54\%). However, a significant proportion of the sample indicated little or no interest in archaeology (84\%), geology (83\%), astronomy and space (79\%), engineering (71\%) and psychology (63\%).
* The majority of respondents (92\%) was of the opinion that scientific knowledge could improve one's ability to make decisions and over four fifths (88%) agreed that the application of science and technology would change work opportunities positively.
* Eighty-five (85\%) of the respondents especially amongst those with educational attainment were of the opinion that scientific developments were beneficial to everyone.
* There was significant agreement on the positive impact of science and technology. The majority of respondents agreed that: scientific and technological advances would help cure illnesses such as AIDS and cancer. (86\%); government should increase investment in science and technology (86%); the benefits of science and technology were greater than the negative effects (85%); and science was the best way to get accurate knowledge about the world (79\%). On the other hand, a substantial percentage (73\%) agreed that society should use expenditure for science in more urgent activities. Three \sim quarters (75\%) of the sample
disagreed that human beings today developed from earlier species of animal.
* A significant majority of the respondents was aware that smoking caused cancer (91%) and high blood pressure was also called hypertension (89\%). Seventy percent (70\%) or more knew that plants produced oxygen (83%), the centre of the earth was very hot (78%); light travelled faster than sound (78\%); the earth rotated around the sun (71\%) and white blood cells helped the body fight infection and other diseases (70\%). Approximately a half or more of the respondents was aware that the continents had changed their positions over long periods of time (62\%), the ozone layer absorbed ultraviolet radiation (56\%) and the mother's gene did not decide the baby's gender (48\%).
* Television was identified by 43% of the survey participants as their main source of information on science, followed by the Internet (25\%). Compared with the results of a similar survey undertaken in 2005, the percentage of the respondents who accessed information on science on the Internet increased to 25% in 2012 from 10% in 2005.
* Three quarters (75\%) of the respondents were of the opinion that the media did not provide sufficient information on science.
* Over a half (56\%) of the survey respondents read the newspapers daily or almost daily. Thirty~eight percent (38\%) were occasional, once a week or seldom readers while 6% never read newspapers. However, only 13% read scientific articles regularly.
* Of the respondents engaged in television viewing, 22% accessed scientific information regularly.
* The percentage of respondents who never used the Internet to access scientific information decreased from 70\% in 2005 to 48% in 2012.
* Only a third (35\%) of the sample of respondents read books on science. The proportion of respondents who read books on science increased in relation to educational attainment.
* The majority (74\%) of respondents never read science magazines; only 4% read them regularly and 16% once in a while.
* A substantial percentage (68\%) of the survey respondents agreed that the quality of science and mathematics education in our schools was adequate while one \sim third (31\%) disagreed.
* Overall, two-fifths of the respondents in each case read food labels always (38\%) or sometimes (38\%) and 15\% read food labels whenever a new product was bought.
* Almost all of the survey respondents (96\%) were of the opinion that foods containing GMOs should be labelled accordingly.
* Overall, over a half (57\%) of the survey respondents knew their blood type. The majority of respondents with higher educational knew their blood type while those with primary education recorded the highest percentage (52\%) where the blood type was unknown.
* A relatively large proportion of the respondents (45\%) was of the opinion that HIV/AIDS resulted from a change in people's sexual habits while one fifth indicated a scientist's experiment (20\%) and people's ignorance (19\%). This pattern of responses in 2012 was generally unchanged when compared to the results of the 2005 study.
* The survey participants were mostly familiar with the terms hormone (63\%), DNA (61\%), global warming (60\%) and gene (60\%). A substantial proportion of respondents was not familiar with the terms biodiversity (58\%), catalyst (55\%) and chlorophyll (42\%).
* Over a half (56\%) of the sample of respondents agreed that people who wanted to become scientists had to work abroad while 43% disagreed.
* A relatively large proportion of respondents (42\%) indicated that a scientist's main reason for his/her choice of profession was the quest for knowledge; to solve people's problems (28\%) was next in ranking.
* The majority of respondents (90\%) in the Public Perception of Science Survey, 2012 would encourage their child/children to pursue a scientific career as observed in a similar study of 2005.
* A substantial percentage (68\%) of the survey participants was of the opinion that scientific and technological research was conducted in Trinidad and Tobago and 69% identified the state as the main source of research funding.
* Of the respondents who were of the view that scientific and technological research was conducted in Trinidad and Tobago, an overwhelming majority (90\%) stated that such undertaking was useful.
* A quarter (24\%) of the survey respondents indicated that they had visited the NIHERST/NGC National Science Centre. Most (95\%) of the
respondents who had visited the science centre were satisfied with the visit.
* An extremely small percentage (2\%) of the sample had participated in protest actions or made complaints about problems arising from science and technology activity. However, the majority (85%) of respondents indicated that it was important to participate in these actions
* Overall, the participants of the survey by various age groups demonstrated positive attitudes towards the subject of this enquiry on the public perception of science. The majority (65\%) stated that the study was interesting and 30% found it useful.

Methodology

Introduction

The empirical results of this second study on the public perception of science are intended to assist in monitoring the growth in knowledge, awareness and sources of science through a number of key indicators. This information can, therefore, assist researchers, decision-makers and science communicators in formulating and evaluating policies. This methodology describes the objectives, scope, coverage, data collection and processing of the results of the study.

Objectives of the Survey

The objectives of the survey were to determine the information needs of the public and provide indicators of public attitudes towards science including:
$>$ scientific awareness and literacy,
$>$ sources, interest and consumption of information,
$>$ the popularisation of science,
$>$ scientific research in Trinidad and Tobago and
$>$ change in attitudes to science over time.

Scope

The scope of this study included information on the demographic and social characteristics of the respondents such as age, gender, educational attainment and employment status. Public perception towards science and technology was measured by examining the survey participants' knowledge, interest and attitudes towards science and technology. The enquiry also incorporated data on the sources of information on science and technology and scientific research in Trinidad and Tobago. Changes in knowledge and attitudes towards science over time were also highlighted in this publication by comparing the results to a similar study undertaken in 2005.

Sample Design

The sample design of the survey was based on the approach used by the Central Statistical Office in the conduct of its quarterly household surveys to generate labour
force statistics. Basically, the design consists of a two-stage sampling procedure in which enumeration districts (E.Ds. ~ small geographic areas) are selected at the first stage, followed by a random selection of a cluster of households within each E.D. at the second stage. At each stage, the sampling units are selected with probability proportional to size.

Coverage

Based on the above design, a representative sample of 2,504 households from 564 E.Ds. in all geographic areas of Trinidad and Tobago was selected for the study. These included households of all income groups and social strata of the population. From each of the selected household a respondent was chosen on the basis of having attained the age of sixteen or over and was the last household member to celebrate his/her birthday. In order to maintain the sample size of the survey vacant and close buildings and refusals were replaced. The following table shows the number of respondents by administrative areas.

Distribution of Respondents by Administrative Areas

Administrative area	No. of respondents	Percentage of respondents
	$\mathbf{(1)}$	$\mathbf{(2)}$
Total	$\mathbf{2 5 0 4}$	$\mathbf{1 0 0}$
Port of Spain	103	4
San Fernando	99	4
Arima	61	2
Pt. Fortin	45	2
Chaguanas	144	6
Diego Martin	195	8
St. Ann's	310	13
Tacarigua	258	10
Rest of St. George	127	5
Caroni	216	7
Victoria	339	14
St. Patrick	223	9
St. Andrew/ St. David	116	5
Nariva/ Mayaro	71	3
Tobago	197	8

Data Collection

A questionnaire was designed to include the underlying objectives. Data were subsequently collected by a group of experienced interviewers and supervisors who were trained in administering the survey questionnaire.

Data Processing

As completed questionnaires were received, data were edited for consistency and omissions. Where discrepancies were identified, questionnaires were returned to the field for verification and correction as necessary. Edited data were then captured in the Statistical Package for the Social Sciences (SPSS) version 16.0 software which was used to produce the tabulations in this report.

Results

The results of the survey are presented in the various tabulations and graphics which follow.

Age group (years)	Gender \sim percentage		
	Total	Male	Female
	(1)	(2)	(3)
All ages			
Less than 20	100	46	54
20~29	100	54	46
30~39	100	41	59
$40 \sim 49$	100	45	55
50 and over	100	49	51

Table 1 shows a profile of the respondents by age group and gender who participated in the Public Perception of Science Survey, 2012. Of the total respondents 46% were males and 54% were females. In terms of age, a relatively large proportion (34\%) of the survey respondents was 50 years and over (Table 2). A further examination of the data reveals a similar pattern of age distribution within both genders.

[^0]| Age group (years) | Gender \sim percentage | | |
| :--- | :---: | :---: | :---: |
| | Total | Male | Female |
| | (1) | (2) | (3) |
| All ages | 100 | | |
| Less than 20 | 7 | 100 | 100 |
| $20 \sim 29$ | 20 | 8 | 6 |
| 30~39 | 21 | 18 | 22 |
| $40 \sim 49$ | 18 | 21 | 22 |
| 50 and over | 34 | 19 | 17 |

Age group (years)	Total	Highest level of educational attainment					
		None	Primary	Secondary	Diploma	Associate degree	Bachelor's degree and above
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	percentage of respondents						
All ages	100	1	27	51	8	5	8
Less than 20	100	0	6	84	6	1	3
20~29	100	0	9	61	11	8	12
30~39	100	0	14	59	11	7	9
40~49	100	0	21	58	9	4	7
50 and over	100	1	53	30	5	4	6

The majority of respondents (51\%) reported their highest level of educational attainment as secondary, followed by primary (27\%). A further review of the data by age group within educational attainment shows that the largest proportions of respondents with primary (67%) and no education (80%) were 50 years and over while approximately a third with an associate degree (31\%) and a bachelor's degree and above (30\%) was in the 20~29 age category (Table 4).

Source: Table 3

Age group (years)	Total	Highest level of educational attainment						
		None	Primary	Secondary	Diploma	Associate degree	Bachelor's degree and above	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
All ages	100	100	100	100	100	100	100	
Less than 20	7	0	2	12	5	1	3	
20~29	20	0	6	24	26	31	30	
30~39	21	7	11	25	28	28	25	
$40 \sim 49$	18	13	14	20	20	12	16	
50 and over	34	80	67	20	22	28	26	

| Age group (years) | Total | Employment status | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Employed | Self \sim employed | Unemployed | Student | Retired | Home
 duties |
| | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| All ages | 100 | 42 | 14 | 10 | 8 | 13 | 13 |
| Less than 20 | 100 | 16 | 3 | 9 | 70 | 0 | 2 |
| $20 \sim 29$ | 100 | 53 | 13 | 15 | 13 | 0 | 7 |
| $30 \sim 39$ | 100 | 59 | 19 | 10 | 1 | 0 | 12 |
| $40 \sim 49$ | 100 | 56 | 21 | 10 | 0 | 1 | 11 |
| 50 and over | 100 | 23 | 10 | 6 | 0 | 39 | 21 |

Table 5 shows the percentage of respondents by age group and employment status. The majority of respondents (56\%) were employed while 10% were unemployed. The highest level of unemployment (15\%) was observed in the 20 -29 age cohort.

Source: Table 5

Household size	Total	Gross monthly income						
		<\$2000	$\begin{gathered} \$ 2000 ~ \\ \$ 4999 \end{gathered}$	$\begin{gathered} \$ 5000 ~ \\ \$ 9999 \end{gathered}$	$\begin{gathered} \$ 10000 ~ \\ \$ 14999 \end{gathered}$	$\begin{array}{\|c\|} \hline \$ 15000 ~ \\ \$ 19999 \end{array}$	$\$ 20000$ and over	Not stated
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	percentage of households							
Total	100	7	31	35	13	5	3	6
1 person	100	18	53	21	3	1	0	4
2 persons	100	8	40	31	9	3	3	6
3 persons	100	5	28	39	16	4	3	5
4 persons	100	4	26	37	17	8	4	5
5 or more persons	100	3	19	42	16	7	4	8

Overall, a relatively large proportion (35\%) of the sample of households reported gross monthly incomes in the range of $\$ 5,000 \sim \$ 9,999$. Approximately a third (31\%) of the gross monthly household incomes was between $\$ 2,000 \sim \$ 4,999$, especially amongst households with one (53\%) and two persons (40\%).

Chart 4: Household Size by Gross Monthly Income ~ All Households

Source: Table 6

Area	Level of interest					
		Very interested	Quite interested	A little interested	Not interested	
		(2)		(3)	(4)	(5)
Politics		10	13	34	43	
Arts and entertainment	100	20	26	32	22	
Fashion	100	20	21	29	30	
Science	100	19	24	34	23	
Sports	100	31	26	29	15	
Religion	100	42	32	18	8	
Economics	100	19	25	34	22	

Respondents were asked how interested they were in the above topical areas. Accumulatively, a substantial percentage of respondents was very interested and quite interested in religion (74\%) and sports (57\%). Forty-three percent (43\%) of the respondents expressed a high level of interest in science while 57% indicated a little or no interest. A further review of the findings of the study shows a comparable level of interest in science by various age groups (Table 8). Politics inspired the least degree of interest amongst respondents as 77% reported little and no interest in this area. Data from the public perception of science survey, 2012, compared to the results of a previous undertaking in 2005, reveal a similar level of interest in science (Table 9).

Chart 5: Interest in Topical Areas

Source: Table 7

Table 8: Interest in Science by Age Groups

Age group (years)	Total	Level of interest				
		Very interested	Quite interested	A little interested	Not interested	
	(1)	(2)	(3)	(4)	(5)	
All ages		percentage of respondents				
Less than 20	100	19	23	34	23	
$20 \sim 29$	100	22	22	37	19	
$30 \sim 39$	100	19	25	33	23	
$40 \sim 49$	100	21	24	35	20	
50 and over	100	21	26	32	21	

Chart 6: Interest in Science by Age Groups

Source: Table 8

Level of interest in science	Year		
	2005	2012	
	(1)	(2)	
Total	percentage of respondents		
Very interested	100	100	
Quite interested	21	19	
A little interested	24	24	
Not interested	32	34	

Age group (years)	Informed about science and technology										
		Very well informed	Well informed	Informed	Not informed	Informed cols $(2)+(3)+(4)$					
		(2)						(3)	(4)	(5)	(6)
All ages		7	13	55	25	75					
Less than 20		10	21	52	18	83					
$20 \sim 29$		9	14	55	22	78					
$30 \sim 39$	100	6	13	58	24	77					
$40 \sim 49$	100	6	14	57	24	77					
50 and over	100	6	10	54	30	70					

A substantial proportion of the survey respondents (75%) in 2012 felt that they were informed with respect to science and technology while one quarter (25\%) considered themselves not informed (Table 10); a similar pattern of response was observed in 2005 (Table 11). Within the various age groups the highest percentage of respondents (30%) not informed was aged 50 years and over.

Chart 7: Informed about Science and Technology ~ All Ages

[^1]| Informed about science and technology | Year | |
| :--- | :---: | :---: |
| | 2005 | 2012 |
| | (1) | (2) |
| Total | 100 | percentage of respondents |
| Very well-informed | 6 | 100 |
| Well-informed | 14 | 7 |
| Informed | 54 | 13 |
| Not informed | 26 | 55 |

| Highest level of educational
 attainment | Informed about science and technology | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Very well
 informed | Well
 informed | Informed | Not
 informed | Informed
 cols (2)+
 $(3)+(4)$ |
| | (1) | (2) | (3) | (4) | (5) | (6) |
| All levels | 100 | 7 | 13 | 55 | 25 | 75 |
| None | 100 | 0 | 0 | 27 | 73 | 27 |
| Primary | 100 | 4 | 7 | 52 | 37 | 63 |
| Secondary | 100 | 6 | 13 | 58 | 23 | 77 |
| Diploma | 100 | 10 | 17 | 57 | 16 | 84 |
| Associate degree | 100 | 11 | 18 | 55 | 15 | 84 |
| Bachelor's degree and above | 100 | 19 | 19 | 54 | 8 | 92 |

The survey results show that the proportion of respondents who considered themselves informed about science and technology increased in relation to educational attainment. Sixty-three percent (63\%) of the sample with primary education considered themselves informed with respect to science and technology compared to 92% with a bachelor's degree and above.

Source: Table 12

$\begin{gathered} \text { Age group } \\ \text { (years) } \end{gathered}$	Reason							
	Personal interest	To keep abreast of important developments	To make personal decisions	These are controversial issues for society	I need to do this for my job	Other	Not stated	Do not find out
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	percentage of respondents							
All ages	51	42	37	8	6	2	1	25
Less than 20	57	44	32	10	3	14	0	18
20-29	56	42	37	7	8	1	1	22
30~39	53	40	35	10	8	1	1	24
40~49	49	43	41	7	10	0	0	24
50 and over	45	43	37	7	4	0	1	30

Most respondents (51\%) stated that personal interest was the main reason for seeking information about scientific issues, followed by keeping abreast of important developments (42\%), and personal decision making (37\%). This order of response was recorded for all age groups.

Source: Table 13

Area of science and technology	Level of interest				
	Total	Very interested	Quite interested	A little interested	Not interested
	(1)	(2)	(3)	(4)	(5)
Medicine and health	100	54	29	14	3
Archaeology	100	6	10	23	61
Environment	100	40	32	18	10
Computers and IT	100	30	24	21	26
Astronomy and space	100	8	13	23	56
Geology	100	7	11	25	58
Engineering	100	15	13	24	47
Agriculture	100	30	29	26	15
Psychology	100	19	18	27	36

Table 14 shows respondents' level of interest in various areas of science and technology. The areas that inspired a high level of interest were medicine and health (83\%), environment (72\%), agriculture (59\%) and computers and IT (54\%). However, a significant proportion of the sample indicated little or no interest in archaeology (84%), geology (83%), astronomy and space (79%), engineering (71\%) and psychology (63\%).

Chart 10: Interest in Areas of Science and Technology

Source: Table 14

Age group (years)	Improvement			
	Total	Yes	No	Do not know
All ages	(1)	(2)	(3)	(4)
	percentage of respondents			
	100	92	6	
	100	94	6	2
$40 \sim 49$	100	92	5	0
50 and over	100	92	6	3

The majority of respondents (92%) was of the opinion that scientific knowledge could improve one's ability to make decisions.

Chart 11: Impact of Scientific Knowledge on Decision-making All Ages

Employment status	Effect					
	Total	Change positively	Change negatively	Both positively and negatively	No change	Do not know
	(1)	(2)	(3)	(4)	(5)	(6)
	percentage of respondents					
Total	100	88	4	1	7	1
Employed	100	89	4	0	7	0
Self employed	100	88	3	1	7	1
Unemployed	100	86	5	2	7	1
Student	100	91	3	1	5	0
Retired	100	83	5	0	11	1
Home duties	100	91	5	1	3	0

Over four fifths of the sample of respondents, overall (88%) and by employment status, agreed that the application of science and technology would change work opportunities positively while less than 10% were of the contrary opinion or that scientific and technological application would provide no change.

Chart 12: Effect of Science and Technology on Work Opportunities

| Educational attainment | Benefit from scientific developments | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Everyone | Almost
 everyone | Only a few
 individuals | No one |
| | (1) | (2) | (3) | (4) | (5) |
| Total | percentage of respondents | | | | |
| None | 100 | 53 | 32 | 15 | 1 |
| Primary | 100 | 20 | 27 | 53 | 0 |
| Secondary | 100 | 47 | 32 | 20 | 0 |
| Diploma | 100 | 53 | 33 | 14 | 1 |
| Associate degree | 100 | 62 | 28 | 10 | 0 |
| Bachelor's degree and above | 100 | 59 | 32 | 8 | 2 |

The survey results reveal that 85% of the respondents especially amongst those with educational attainment were of the opinion that scientific developments were beneficial to everyone.

Chart 13: Who Benefits from Scientific Developments ~ All Educational Attainment

Everyone
Almost everyone

- Only a few individuals \square No one

	Statement	Total	Strongly agree	Agree	Disagree	Strongly disagree	Do not know	Agree cols (2) $+(3)$
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
		percentage of respondents						
	The world of science cannot be understood by ordinary people.	100	7	44	43	5	1	51
2	Scientific and technological advances will help cure illnesses such as AIDS, cancer, etc.	100	29	57	11	2	1	86
3	The benefits of science and technology are greater than the negative effects.	100	23	62	10	2	3	85
4	Science is the best way to get accurate knowledge about the world.	100	21	58	18	2	1	79
5	Because of technological development science will dehumanise life.	100	5	35	46	9	5	40
6	Science and technology cause problems for humankind.	100	7	46	36	7	3	54
7	The government should increase investment in science and technology.	100	31	55	12	1	1	85
8	Society should use expenditure for science in more "urgent" activities.	100	14	59	22	3	2	73
9	Human beings today developed from earlier species of animal.	100	4	19	36	39	2	23

An analysis of the variations in responses to the series of statements in Table 18 indicates significant agreement on the positive impact of science and technology. The majority of respondents agreed that: scientific and technological advances would help cure illnesses such as AIDS, cancer, etc. (86\%); the government should increase investment in science and technology (86%); the benefits of science and technology were greater than the negative effects (85%); and science was the best way to get accurate knowledge about the world (79\%). On the other hand, a substantial percentage (73%) agreed that society should use expenditure for science in more urgent activities, but were more divided on the statements: science and technology caused problems for humankind (54\%); the world of science could not be understood by ordinary people (51\%); and because of technological development science would dehumanise life (40%). Three \sim quarters (75%) of the sample disagreed that human beings today developed from earlier species of animal.

Chart 14: Agreement with Statements on Science and Technology

[^2]	Statement	Total	True	False	Do not know
	(1)	(2)	(3)	(4)	
percentage of respondents					

The statements above tested the respondents' knowledge of science. A significant majority of the respondents was aware that smoking caused cancer (91%) and high blood pressure was also called hypertension (89\%). Correct responses of 70% or more were recorded for the following five statements: plants produced oxygen (83%), the centre of the earth was very hot (78%); light travelled faster than sound (78\%); the earth rotated around the sun (71\%); and white blood cells helped the body fight infection and other diseases (70\%). Approximately a half or more of the respondents was aware that: the continents had changed their positions over long periods of time (62\%); the ozone layer absorbed ultraviolet radiation (56\%); and the mother's gene did not decide the baby's gender (48\%). Less than a third of the respondents knew that: all radioactivity was not produced by man (30\%); electrons were smaller than atoms (28\%); and antibiotics did not kill both viruses and bacteria (25%). The cumulative frequency of the scores of the fourteen statements showed that 2%, 23% and 76% of the sample obtained $100 \%, 75 \%$, and 50% and above of the correct responses respectively.

Chart 15: Knowledge of Science

Source: Table 19

Age group (years)	Source of information on science								
	Total	Newspapers	Books	Magazines	Radio	Television	Internet	Other	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
All ages	100	10	13	1	3	43	25	5	
Less than 20	100	3	18	1	2	35	29	12	
$20 \sim 29$	100	9	14	1	2	39	31	5	
30~39	100	10	13	2	3	40	29	4	
$40 \sim 49$	100	10	12	1	3	44	26	4	
50 and over	100	13	12	1	4	47	17	6	

When asked about the leading source of their information on science, a relatively large proportion of the survey participants identified the television (43\%), followed by the Internet (25\%) and books (13\%). Compared with the results of similar survey undertaken in 2005, the percentage of the respondents who accessed information on science on the Internet increased to 25% in 2012 from 10% in 2005. Three~quarters (75\%) of the respondents, overall and by various age groups, were of the opinion that the media did not provide sufficient information on science (Table 21).

Source: Table 20

Age group (years)	Enough media information on science			
	Total	Yes	No	Do not know
	(1)	(2)	(3)	(4)
All ages	percentage of respondents			
Less than 20	100	23	75	2
20~29	100	24	76	1
30~39	100	23	75	2
$40 \sim 49$	100	21	77	2
50 and over	100	22	75	3

Chart 17: Enough Media Information on Science ~ All Ages

Source: Table 21

Age group (years)	Read newspapers						
	Total	Daily	Almost daily	Once a week	Seldom	Never	
	(1)	(2)	(3)	(4)	(5)	(6)	
All ages	percentage of respondents						
Less than 20	100	30	26	13	25	6	
$20 \sim 29$	100	18	21	23	30	8	
30~39	100	29	26	13	27	4	
$40 \sim 49$	100	28	24	14	28	7	
50 and over	100	31	31	13	21	4	

Table 22 shows that of the survey respondents over a half (56%), overall and within the age groups 20~29 and over, read the newspapers daily or almost daily. Thirty-eight percent (38\%) were occasional, once a week or seldom readers while 6% never read newspapers. The survey results of 2012 also reveal that a half or more of the respondents with educational attainment, ranging from 49% of those with primary education to 66% with a bachelor's degree and above, read the newspapers frequently, daily and almost daily (Table 23).

Source: Table 22

Educational attainment	Read newspapers						
	Total	Daily	Almost daily	Once a week	Seldom	Never	
	(1)	(2)	(3)	(4)	(5)	(6)	
Total	percentage of respondents						
None	100	30	26	13	25	6	
Primary	100	7	13	7	20	53	
Secondary	100	25	24	14	27	10	
Technical	100	30	27	13	25	5	
Associate degree	100	36	28	10	21	5	
Bachelor's degree and above	100	29	21	15	30	5	

Chart 19: Reading of Newspapers by Educational Attainment

Educational attainment

Source: Table 23

Age group (years)	Listening to radio					
	Total	Three or more hours daily	Less than three hours daily	Some days in the week	Seldom	Never
	(1)	(2)	(3)	(4) percentage of respondents	(5)	(6)
All ages	100	43	20	19	14	2
Less than 20	100	41	18	23	14	3
$20 \sim 29$	100	42	23	20	13	3
$30 \sim 39$	100	43	19	21	15	2
$40 \sim 49$	100	44	20	22	13	2
50 and over	100	45	21	17	15	2

A relatively large percentage (43%) of respondents indicated that they listened to the radio three or more hours daily and one-fifth in each case listened less than three hours daily (20\%) and some days in the week (19\%). A similar pattern of responses was observed by age group.

Chart 20: Listening to Radio by Age Groups

Source: Table 24

	Television viewing					
Age group (years)	Total	Three or more hours daily	Less than three hours daily	Some days in the week	Seldom	Never
	(1)	(2)	(3)	(4)	(5)	(6)
All ages	100	48	25	15	10	2
Less than 20	100	44	26	20	9	1
$20 \sim 29$	100	49	24	16	11	1
$30 \sim 39$	100	46	24	17	10	3
$40 \sim 49$	100	48	27	16	7	1
50 and over	100	50	25	11	10	3

Approximately a half (48\%) of the sample of respondents reported television viewing of three or more hours daily, also seen as the modal viewing period of the various age groups. A quarter (25%) of the survey participants stated that they watched television less than three hours daily. A negligible 2% of the respondents never watched television.

Chart 21: Television Viewing by Age Groups

Source: Table 25

Age group (years)	Media type	Frequency of accessing scientific information				
		Total	Regularly	Once in a while	Only when I find something interesting	Never
All ages		(1)	(2)	(3)	(4)	(5)
				centage of	espondents	
	Newspapers	100	13	20	41	26
	Radio	100	5	17	31	46
	Television	100	22	28	40	9
	Internet	100	12	13	27	48
Less than 20	Newspapers	100	10	19	42	30
	Radio	100	3	19	28	51
	Television	100	27	24	38	10
	Internet	100	21	11	39	29
20~29	Newspapers	100	13	22	41	24
	Radio	100	3	19	28	50
	Television	100	23	29	40	8
	Internet	100	15	16	31	38
30~39	Newspapers	100	13	21	39	27
	Radio	100	6	19	29	46
	Television	100	24	27	40	9
	Internet	100	12	12	32	43
40~49	Newspapers	100	13	21	42	24
	Radio	100	5	16	36	42
	Television	100	24	29	40	8
	Internet	100	12	14	27	47
50 and over	Newspapers	100	13	18	42	27
	Radio	100	6	16	31	47
	Television	100	20	28	41	11
	Internet	100	8	12	18	62

Table 26 presents the frequencies with which respondents accessed scientific information from various types of electronic and print media. Television was identified as the main source of scientific information by all age groups. Of the respondents engaged in television viewing, 22% accessed scientific information regularly and a similar percentage in the case of newspaper readers (13\%) and users of the Internet (12\%). However, the majority of respondents sought scientific information from the media only on a subject of interest. The percentage of respondents who never used the Internet to access scientific information decreased from 70% in 2005 to 48% in 2012. The survey results also show that the proportion of respondents who used the Internet to access scientific information increased in relation to educational attainment (Table 27).

Chart 22: Accessing Scientific Information by Media Type ~ All Ages

Source: Table 26

Educational attainment	Media type	Frequency of accessing scientific information				
		Total	Regularly	Once in a while	Only when I find something interesting	Never
Total		(1)	(2)	(3)	(4)	(5)
		percentage of respondents				
	Newspapers	100	13	20	41	26
	Radio	100	5	17	31	46
	Television	100	22	28	40	9
	Internet	100	12	13	27	48
None	Newspapers	100	0	14	14	71
	Radio	100	0	29	29	43
	Television	100	21	36	36	7
	Internet	100	7	0	0	93
Primary	Newspapers	100	10	18	42	31
	Radio	100	4	14	34	48
	Television	100	17	28	42	13
	Internet	100	7	10	18	65
Secondary	Newspapers	100	12	21	42	25
	Radio	100	5	18	30	47
	Television	100	23	27	41	8
	Internet	100	12	12	28	47
Diploma	Newspapers	100	19	26	38	18
	Radio	100	9	26	26	39
	Television	100	25	33	33	8
	Internet	100	15	20	35	30
Associate degree	Newspapers	100	14	15	39	32
	Radio	100	7	13	28	52
	Television	100	26	21	39	14
	Internet	100	17	16	35	32
Bachelor's degree and above	Newspapers	100	24	18	41	17
	Radio	100	7	21	33	39
	Television	100	29	32	36	3
	Internet	100	24	18	38	20

Chart 23: Accessing Scientific Information from Newspapers by Educational Attainment

Chart 24: Accessing Scientific Information from Radio by Educational Attainment

- Never
- Only when I find something interesting
- Once in a while
- Regularly

Educational attainment

Educational attainment

Chart 26: Accessing Scientific Information from Internet by Educational

Age group (years)	Reading books on science		
	Total	Yes	No
	(1)	(2)	(3)
All ages	percentage of respondents		
Less than 20	100	35	65
$20 \sim 29$	100	47	53
$30 \sim 39$	100	41	59
$40 \sim 49$	100	36	64
50 and over	100	33	67

The above table shows that only a third (35\%) of the sample of respondents read books on science. The highest percentage of respondents (47\%) that read books on science was observed among the less than 20 age group with the largest proportion of students (Table 5). The data reveal an inverse relationship between the age cohorts and the proportion of respondents who read books on science.

Chart 27: Reading of Books in Science by Age Groups

Source: Table 28

Educational attainment	Reading books on science		
	Total	Yes	No
Total	(1)	(2)	(3)
	percentage of respondents		
	100	35	65
Secondary	100	7	93
Diploma	100	24	76
Associate degree	100	34	66
Bachelor's degree and above	100	50	50

Table 29 shows that the proportion of respondents who read books on science increased in relation to educational attainment. A quarter (24\%) of the respondents with primary education read books on science compared to three-fifths (62\%) with a bachelor's degree and above.

Source: Table 29

Age group (years)	Reading of science magazines					
	Total	Regularly	Once in a while	I used to	Never	
	(1)	(2)	(3) percentage of respondents			
All ages	100	4	16	7	(5)	
Less than 20	100	3	19	7	74	
20~29	100	3	18	8	71	
30~39	100	3	18	7	71	
$40 \sim 49$	100	5	16	8	72	
50 and over	100	4	13	5	72	

The majority (74%) of respondents never read science magazines; only 4% read them regularly and 16% once in a while. A similar pattern of responses was recorded in all age groups (Table 30). By educational attainment, respondents with tertiary level qualification read science magazines more often as shown (Table 31). National Geographic was identified as the most widely read science magazine.

Source: Table 30

Educational attainment	Reading of science magazines									
	Total	Regularly	Once in a while	I used to	Never					
	(1)	(2)						(3)	(4)	(5)
Total	100	4	percentage of respondents							
None	100	0	16	7	74					
Primary	100	2	7	0	93					
Secondary	100	3	11	5	83					
Diploma	100	5	15	7	75					
Associate degree	100	8	29	9	57					
Bachelor's degree and above	100	10	15	8	69					

Chart 30: Reading of Science Magazines by Educational Attainment

Source: Table 31

Age group (years)	Quality of science and mathematics education						
	Total	Strongly agree	Agree	Disagree	Strongly disagree	Do not know	Agree cols (2) + (3)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
All ages	100	13	54	28	3	1	68
Less than 20	100	10	55	27	5	2	65
20~29	100	10	52	30	7	1	62
30~39	100	8	54	31	6	2	61
$40 \sim 49$	100	10	52	27	6	5	62
50 and over	100	10	53	28	6	3	63

Table 32 shows that a substantial percentage (68\%) of the survey respondents agreed that the quality of science and mathematics education in our schools was adequate while one third (31\%) disagreed. A similar pattern of responses was observed by age groups and educational attainment (Table 33).

Source: Table 32

| Educational attainment | Quality of science and mathematics education | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Strongly
 agree | Agree | Disagree | Strongly
 disagree | Do not
 know | Agree
 cols (2)
 (3) |
| | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| Total | 100 | 10 | 53 | 28 | 6 | 3 | 63 |
| None | 100 | 7 | 73 | 7 | 0 | 13 | 80 |
| Primary | 100 | 10 | 53 | 28 | 5 | 4 | 63 |
| Secondary | 100 | 9 | 56 | 28 | 5 | 3 | 65 |
| Diploma | 100 | 9 | 47 | 34 | 8 | 2 | 56 |
| Associate degree | 100 | 11 | 51 | 24 | 10 | 4 | 63 |
| Bachelor's degree and above | 100 | 14 | 44 | 30 | 10 | 2 | 58 |

Chart 32: Quality of Science and Mathematics Education in Schools by Educational Attainment

Source: Table 33

	Read food labels				
Age group (years)	Total	Always	Always when I buy a new product	Sometimes	Never
	(1)	(2)	(3)	(4)	(5)
All ages	100	38	percentage of respondents		
Less than 20	100	32	15	38	9
20~29	100	38	14	42	12
30~39	100	40	17	37	7
$40 \sim 49$	100	42	16	36	8
50 and over	100	34	16	37	5

Overall, two fifths of the respondents in each case read food labels always (38\%) or sometimes (38\%); 15% read food labels whenever a new product was bought. The survey results of 2012 reveal that respondents in the less than 20 , and 50 and over age groups read food labels less frequently than their counterparts in the other age categories (Table 34). A further review of the data by educational attainment shows that over a third of the respondents with educational attainment always read food labels (Table 35).

Chart 33: Read Food Labels by Age Groups

Age group (years)

Source: Table 34

Educational attainment	Read food labels				
	Total	Always	Always when I buy a new product	Sometimes	Never
	percentage of respondents				
Total	100	38	15	38	9
None	100	13	0	20	67
Primary	100	35	14	39	12
Secondary	100	38	16	39	7
Diploma	100	39	15	41	5
Associate degree	100	38	17	39	6
Bachelor's degree and above	100	45	17	32	6

Chart 34: Read Food Labels by Educational Attainment

Source: Table 35

Age group (years)	Label food with GMOs					
	Total	Yes	No	Do not know		
	(1)	(2)	(3)	(4)		
All ages						percentage of respondents
Less than 20	100	96	3	1		
$20 \sim 29$	100	97	3	1		
$30 \sim 39$	100	97	2	1		
$40 \sim 49$	100	96	3	1		
50 and over	100	97	3	0		

Almost all of the survey respondents (96\%), overall and by various age groups (Table 36), and educational attainment (Table 37), were of the opinion that foods containing GMOs should be labelled accordingly.

Chart 35: Labelling of Foods Containing Genetically Modified Organisms (GMOs) ~ All Ages

Source: Table 36

Educational attainment	Label food with GMOs			
	Total	Yes	No	Do not know
Total	(1)	(2)	(3)	(4)
	100	percentage of respondents		
	100	96	3	3
	100	95	0	1
Diploma	100	97	4	7
Associate degree	100	98	3	1
Bachelor's degree and above	100	96	2	1

Age group (years)	Blood type known		
	Total	Yes	No
	(1)	(2)	(3)
All ages	percentage of respondents		
Less than 20	100	57	43
$20 \sim 29$	100	43	57
30~39	100	56	44
$40 \sim 49$	100	61	39
50 and over	100	59	41

Overall, over a half (57\%) of the survey respondents knew their blood type. This pattern of response was recorded in all age groups except the less than 20 age category where less than a half (43%) was aware of their blood type (Table 38). By educational attainment, two thirds or more of the respondents with a diploma (70\%), associate degree (68\%) and bachelor's degree and above (66\%) education knew their blood type while those with primary education recorded the highest percentage (52\%) where the blood type was unknown (Table 39).

Source: Table 38

Educational attainment	Blood type known		
	Total	Yes	No
Total	(1)	(2)	(3)
	percentage of respondents		
	100	57	43
Secondary	100	53	47
Diploma	100	48	52
Associate degree	100	56	44
Bachelor's degree and above	100	70	30

Chart 37: Blood Type Known by Educational Attainment

Educational attainment

Source: Table 39

Question put to doctor	Percentage of respondents		
	Total	Yes	No
	(1)	(2)	(3)
1 How to follow instructions for treatment	100	percentage of respondents	
2 What are the side effects of treatment	100	77	23
3 What causes the illness	100	82	18
4 What are the negative effects of the illness	100	73	27
5 No questions	100	68	32
6 Other	100	3	97

Respondents were asked to select the questions they would ask when a doctor told them about certain medication or treatment and illness. The majority of respondents selected the following options: what were the side effects of the treatment (82%) ; how to follow instructions for treatment (77%); what caused the illness (73%); and what were the negative effects of the illness (68\%). Only 3% indicated that they would not ask the doctor any questions.

Chart 38: Questions on Illness and Treatment

Source: Table 40

	Cause of HIV/AIDS						
Age group (years)	Total	The natural evolution of illnesses	Change in people's sexual habits	A scientist's experiment	People's ignorance	Do not know	
	(1)	(2)	(3)	(4)	(5)	(6)	
All ages	percentage of respondents						
Less than 20	100	10	45	20	19	5	
$20 \sim 29$	100	9	47	18	21	5	
$30 \sim 39$	100	9	42	22	22	5	
$40 \sim 49$	100	10	46	19	21	4	
50 and over	100	11	42	26	16	5	

A relatively large proportion of the respondents (45\%) was of the opinion that HIV/AIDS resulted from a change in people's sexual habits while one-fifth indicated a scientist's experiment (20\%) and people's ignorance (19\%). This pattern of responses in 2012, both by age group (Table 41) and educational attainment (Table 42), was generally unchanged when compared to the results of the 2005 study.

Chart 39: Causes of HIV/AIDS by Age Groups

Educational attainment	Cause of HIV/AIDS					
	Total	The natural evolution of illnesses	Change in people's sexual habits	A scientist's experiment	People's ignorance	Do not know
	percentage of respondents					(6)
Total	100	10	45	20	19	5
None	100	0	53	27	7	13
Primary	100	9	44	17	22	8
Secondary	100	10	47	19	20	4
Diploma	100	7	44	25	17	6
Associate degree	100	11	40	24	20	5
Bachelor's degree and above	100	16	45	22	11	7

Chart 40: Causes of HIV/AIDS by Educational Attainment

Source: Table 42

Scientific term	Familiarity						
	Total	Very familiar	Familiar	Vaguely familiar	Not familiar	Familiar cols (2) + (3)	
	(1)	(2)	(3)	(4)	(5)	(6)	
Catalyst							
Chlorophyll	100	11	18	17	55	29	
Hormone	100	17	23	17	42	40	
DNA	100	25	38	25	12	63	
Global warming	100	25	36	21	18	61	
Biodiversity	100	25	35	22	19	60	
Gene	100	11	16	15	58	27	
Thermostat	100	24	36	25	16	60	

Table 43 shows the level of familiarity with selected scientific terms. The survey participants were mostly familiar with the terms hormone (63\%), DNA (61\%), global warming (60\%) and gene (60\%). A substantial proportion of respondents was not familiar with the terms biodiversity (58%), catalyst (55%) and chlorophyll (42%). However, the level of familiarity with these three scientific terms increased with that of educational attainment (Table 44).

Chart 41: Familiarity with Selected Scientific Terms

Scientific term

Source: Table 43

Catalyst

Educational attainment	Familiarity				
	Total	Very familiar	Familiar	Vaguely familiar	Not familiar
	(1)	(2)	(3)	(4)	(5)
Total		percentage of respondents			
None	100	11	18	17	55
Primary	100	0	0	0	100
Secondary	100	5	12	12	71
Diploma	100	8	17	19	55
Associate degree	100	17	29	13	41
Bachelor's degree and above	100	19	24	23	34

Chlorophyll

| Educational attainment | Familiarity | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Very
 familiar | Familiar | Vaguely
 familiar | Not
 familiar |
| | (1) | (2) | (3) | (4) | (5) |
| Total | | percentage of respondents | | | |
| None | 100 | 17 | 23 | 17 | 42 |
| Primary | 100 | 0 | 7 | 0 | 93 |
| Secondary | 100 | 10 | 15 | 15 | 59 |
| Diploma | 100 | 16 | 24 | 19 | 41 |
| Associate degree | 100 | 23 | 34 | 15 | 28 |
| Bachelor's degree and above | 100 | 26 | 34 | 20 | 21 |

Biodiversity

| Educational attainment | Familiarity | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Very
 familiar | Familiar | Vaguely
 familiar | Not
 familiar |
| | (1) | (2) | (3) | (4) | (5) |
| Total | | percentage of respondents | | | |
| None | 100 | 11 | 16 | 15 | 58 |
| Primary | 100 | 0 | 7 | | 93 |
| Secondary | 100 | 7 | 9 | 10 | 73 |
| Diploma | 100 | 9 | 16 | 17 | 58 |
| Associate degree | 100 | 13 | 29 | 16 | 42 |
| Bachelor's degree and above | 100 | 19 | 19 | 24 | 37 |

Familiar cols (2) $+(3)$
(6)
29
0
17
25
46
43
59

Familiar cols (2) $+(3)$
(6)
40
7
25
40
57
60
67

Familiar cols (2) $+(3)$
(6)

27
7
16
25
42
38
56

Chart 42: Familiarity with the Term Catalyst by Education Attainment

Chart 43: Familiarity with the Term Chlorophyll by Educational Attainment

Educational attainment

Chart 44: Familiarity with the Term Biodiversity by Educational Attainment

Source: Table 44

| Educational attainment | Work abroad to become scientist | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | Strongly
 agree | Agree | Disagree | Strongly
 disagree | Do not
 know | Agree
 cols
 $(2)+(3)$ |
| | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
| Total | 100 | 13 | 43 | 38 | 5 | 1 | 56 |
| None | 100 | 13 | 60 | 20 | 0 | 7 | 73 |
| Primary | 100 | 11 | 47 | 37 | 4 | 1 | 58 |
| Secondary | 100 | 13 | 44 | 37 | 4 | 1 | 57 |
| Diploma | 100 | 17 | 37 | 40 | 5 | 1 | 53 |
| Associate degree | 100 | 21 | 37 | 34 | 5 | 2 | 59 |
| Bachelor's degree and above | 100 | 16 | 31 | 43 | 9 | 1 | 47 |

Over a half (56\%) of the sample of respondents agreed that people who wanted to become scientists had to work abroad while 43% disagreed. The highest level of disagreement was recorded amongst respondents with a bachelor's degree and above (52\%) (Table 45) and respondents who stated they were very well-informed with respect to science and technology (53\%) (Table 46).

Informed on science and technology	Work abroad to become a scientist							
	Total	Strongly agree	Agree	Disagree	Strongly disagree	Do not know	Agree cols $(2)+(3)$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Total	100	13	43	38	5	1	56	
Very well-informed	100	19	27	41	12	1	46	
Well-informed	100	15	40	40	4	1	55	
Informed	100	14	43	38	5	1	57	
Not informed	100	10	50	35	3	3	59	

| Educational
 attainment | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | To
 make
 money | For
 prestige | To do
 good | To solve
 people's
 problems | Quest for
 knowledge | To gain
 power | Love
 science | Do
 not
 know |
| Total | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
| None | 100 | 13 | 2 | 12 | 28 | 42 | 2 | 1 | 1 |
| Primary | 100 | 33 | 0 | 13 | 40 | 7 | 0 | 0 | 7 |
| Secondary | 100 | 13 | 2 | 15 | 30 | 36 | 2 | 0 | 1 |
| Diploma | 100 | 12 | 2 | 12 | 28 | 44 | 2 | 0 | 0 |
| Associate Degree | 100 | 13 | 2 | 9 | 26 | 49 | 0 | 1 | 0 |
| Bachelor's Degree | 100 | 11 | 1 | 15 | 27 | 45 | 1 | 1 | 0 |
| and above | 100 | 14 | 3 | 7 | 24 | 51 | 0 | 2 | 0 |

A relatively large proportion of respondents (42\%), especially amongst those with educational attainment (Table 47) and those informed on science and technology (Table 48), indicated that a scientist's main reason for his/her choice of profession was the quest for knowledge; to solve people's problems (28\%) was next in ranking.

Chart 46: Scientist's Reason for Choice of Profession

Informed on science and technology	Main reason for choice of profession								
	Total	To make money	For prestige	To do good	To solve people's problems	Quest for knowledge	To gain power	Love science	$\begin{gathered} \text { Do } \\ \text { not } \\ \text { know } \end{gathered}$
Total Very well~ informed	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	percentage of respondents								
	100	13	2	12	28	42	2	1	1
	100	8	1	9	24	57	0	1	1
Well-informed	100	13	3	12	25	46	0	0	0
Informed	100	11	2	10	29	45	2	1	1
Not informed	100	18	2	17	29	30	3	0	1

Educational attainment	Encourage child		
	Total	Yes	No
Total	(1)	(2)	(3)
	percentage of respondents		
	100	90	10
Secondary	100	80	20
Diploma	100	89	11
Associate degree	100	90	10
Bachelor's degree and above	100	92	8

The table above shows that a significant majority of respondents (90\%) in the Public Perception of Science Survey, 2012 would encourage their child/children to pursue a scientific career as observed in a similar study of 2005.

Chart 47: Encourage Child to Pursue Scientific Career All Respondents

Source: Table 49

Informed on science and technology	Name local scientist		
	Total	Yes	No
Total	(1)	(2)	(3)
	percentage of respondents		
	100	10	90
Informed	100	25	75
Not informed	100	19	81

The survey results reveal that only a small percentage (10%) of the respondents could recall the name of a local scientist (Table 50). However, a substantial percentage (68\%) of the survey participants, especially amongst those informed about scientific activities (Table 51), was of the opinion that scientific and technological research was conducted in Trinidad and Tobago.

Source: Table 50

Informed on science and technology	Science and technology research		
	Total	Yes	No
Total	(1)	(2)	(3)
	percentage of respondents		
	100	68	32
Informed	100	81	19
Not informed	100	82	18

Chart 49: Science and Technology Research in Trinidad and Tobago All Respondents

Source: Table 51

Informed on science and technology	Name institution		
	Total	Yes	No
Total	(1)	(2)	(3)
	100	percentage of respondents	
	100	61	39
Informed	100	76	24
Not informed	100	67	33

Three-fifths (61\%) of the survey respondents overall, and more so of those who were informed of scientific and technological research undertaken in Trinidad and Tobago, were able to name an institution where such activity was conducted. The institutions mainly identified were: The University of the West Indies, Caribbean Industrial Research Institute and The University of Trinidad and Tobago.

Source: Table 52

Informed on science and technology	Research useful			
	Total	Yes	No	Do not know
	(1)	(2)	(3)	(4)
	percentage of respondents			
	100	90	6	4
	100	92	6	2
Informed	100	92	5	3
Not informed	100	90	6	4

Of the respondents who were of the view that scientific and technological research was conducted in Trinidad and Tobago, an overwhelming majority (90\%) stated that such undertaking was useful.

Source: Table 53

Source of financing	Percentage of respondents
	(1)
Total	100
Scientists	3
Private enterprises	4
Private foundations	3
Foreign countries	4
Government	69
International organisations	7
Do not know	10

Government was identified as the main source of research funding by the majority (69\%) of respondents who thought research was conducted locally.

Chart 52: Source of Science and Technology Financing

Source: Table 54

Age group (years)	Visited the science centre		
	Total	Yes	No
	(1)	(2)	(3)
All ages	percentage of respondents		
Less than 20	100	24	76
20~29	100	31	69
30~39	100	27	73
40~49	100	24	76
50 and over	100	25	75

A quarter (24\%) of the survey respondents indicated that they had visited the NIHERST/NGC National Science Centre while 76% never did. The data show that approximately one-third (31\%) of respondents in the less than 20 age group were past visitors to the science centre (Table 55). A further review of the data by educational attainment reveals a positive relationship between educational attainment and visits to the science centre where 43% with a bachelors' degree or above qualification visited compared to 16% with primary education (Table 55). Additionally, respondents who were informed about science and technology were more inclined to visit the science centre than those not informed (Table 57). Table 58 shows that most (95\%) of the respondents who had visited the science centre were satisfied with the visit.

Chart 53: Visited NIHERST/National Science Centre by Age Groups

| Educational attainment | Visited the science centre | | |
| :--- | :---: | :---: | :---: | :---: |
| | Total | Yes | No |
| | (1) | (2) | (3) |
| Total | percentage of respondents | | |
| None | 100 | 7 | 93 |
| Primary | 100 | 16 | 84 |
| Secondary | 100 | 24 | 76 |
| Diploma | 100 | 32 | 68 |
| Associate degree | 100 | 27 | 73 |
| Bachelor's degree and above | 100 | 43 | 57 |

Chart 54: Visited NIHERST/NGC National Science Centre by Educational Attainment

Educational attainment

Source: Table 56

Informed on science and technology	Visited the science centre		
	Total	Yes	No
Total	(1)	(2)	(3)
	100	percentage of respondents	
	100	24	76
Informed	100	38	62
Not informed	100	38	62

Age group (years)	Satisfied with visit ~ percentage of respondent		
	Total	Yes	No
All ages	(1)	(2)	(3)
	percentage of respondents		
	100	95	5
$30 \sim 39$	100	98	2
$40 \sim 49$	100	95	5
50 and over	100	95	5

Chart 55: Satisfied with Visit to the NIHERST/NGC National Science Centre All Ages

Source: Table 58

| | Protest action | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Participation | | | | Important to participate | |
| | Total | Yes | No | Total | Yes | No |
| | (1) | (2) | (3) | (4) | (5) | (6) |
| | 100 | 2 | 98 | 100 | 85 | 15 |

Table 60: Type of Protest Action

Type of action	Participation		
	Total	Yes	No
	(1)	(2)	(3)
	percentage of respondents		
	100	55	45
	100	31	69
Other	100	29	71

Table 59 shows that an extremely small percentage (2%) of the sample had participated in protest actions or made complaints about problems arising from science and technology activity. However, when asked if it was important to participate in these actions the majority (85%) of respondents replied in the affirmative. The main form of protest action was protest rally (55%) followed by public forum (31\%) and written petition (29\%) (Table 60).

Chart 56: Participation in Protest Action

Source: Table 59

Chart 57: Important to Participation in Protest Action

Main obstacle	Percentage of respondents
	(1)
Total	100
People are not interested	26
People have more important problems to complain about	19
There are no channels for participation	9
Complaints do not produce results	15
People are not knowledgeable enough to participate	26
People are afraid of the consequences	1
Not stated	4

The survey data show that peoples' lack of interest (26\%) and insufficient knowledge (26\%) were the two main obstacles to participating in science and technology issues. One fifth (19\%) of the respondents indicated that there were more important problems about which to complain.

Age group (years)	Comment							
	Total	Interesting	Useful	Difficult	Boring	Other		
	(1)	(2)	(3)	(4)	(5)	(6)		
All ages								percentage of respondents
Less than 20	100	65	30	3	1	1		
$20 \sim 29$	100	64	31	3	1	1		
30~39	100	65	30	3	1	0		
$40 \sim 49$	100	69	27	2	1	1		
50 and over	100	69	27	3	0	1		

Overall, the participants of the survey by various age groups demonstrated positive attitudes towards the subject of the enquiry on the public perception of science. The majority (65%) stated that the study was interesting and 30% found it useful.

Source: Table 62

Interest in S\&T Areas

Administrative areas	Medicine and Health		Archaeology		Environment		Computers and IT		Astronomy and Space		Geology		Engineering		Agriculture		Psychology	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
	2012	2005	2012	2005	2012	2005	2012	2005	2012	2005	2012	2005	2012	2005	2012	2005	2012	2005
Total	83.0	82.8	16.3	14.4	72.4	78.6	53.2	57.5	20.9	18.9	17.7	19.4	28.4	28.1	58.7	57.7	36.7	40.3
Port of Spain	85.4	93.8	22.3	9.4	76.7	81.3	58.3	46.9	22.3	10.9	22.3	10.9	35.9	26.6	62.1	42.2	43.7	28.1
San Fernando	79.8	84.8	14.1	12.1	72.7	89.4	60.6	60.6	23.2	24.2	21.2	13.6	20.2	24.2	48.5	69.7	32.3	39.4
Arima	88.5	93.2	24.6	13.6	86.9	79.5	65.6	65.9	24.6	22.7	21.3	22.7	36.1	29.5	63.9	56.8	62.3	56.8
Point Fortin	80.0	96.4	44.4	0.0	84.4	100.0	73.3	60.7	48.9	0.0	31.1	3.6	44.4	21.4	62.2	39.3	57.8	64.3
Chaguanas	85.4	85.9	15.3	17.6	79.9	84.7	61.8	68.2	28.5	28.2	22.2	29.4	25.7	35.3	57.6	56.5	36.8	44.7
Diego Martin	76.9	88.6	13.8	18.2	65.6	82.6	44.1	62.9	12.3	18.9	13.8	22.0	23.1	31.1	52.8	54.5	33.8	45.5
St Anns	83.9	67.6	11.9	10.2	64.8	86.2	46.5	54.2	17.4	16.0	14.5	12.0	23.5	32.0	54.8	60.9	31.0	35.1
Tacarigua	86.8	80.0	13.2	14.7	72.5	77.1	50.4	68.8	19.0	22.4	17.4	20.6	26.0	28.8	64.0	51.2	39.1	48.8
Rest of St George	83.5	87.4	14.2	24.1	74.8	77.0	54.3	56.3	18.9	19.5	12.6	27.6	23.6	27.6	63.0	56.3	36.2	52.9
Caroni	75.0	85.5	14.4	18.1	67.6	68.8	48.1	51.4	18.1	25.4	12.0	19.6	25.0	30.4	52.3	59.4	27.3	38.4
Victoria	85.0	84.1	13.6	17.8	66.7	76.6	48.7	59.8	16.2	20.6	15.6	23.4	34.5	28.0	53.7	56.1	26.0	35.5
St Patrick	78.5	83.9	15.2	16.8	70.9	73.7	53.4	51.1	23.8	17.5	17.0	25.5	29.1	28.5	57.8	59.9	38.1	42.3
St Andrew/St David	80.2	75.0	24.1	4.7	75.9	71.9	53.4	42.2	30.2	9.4	19.8	12.5	32.8	26.6	63.8	67.2	39.7	17.2
Nariva/Mayaro	85.9	80.0	14.1	12.5	70.4	40.0	43.7	45.0	16.9	17.5	12.7	12.5	23.9	7.5	63.4	70.0	33.8	35.0
Tobago	90.9	89.1	24.4	7.9	89.8	83.2	71.6	57.4	27.4	11.9	29.4	17.8	34.5	18.8	74.1	62.4	57.9	37.6

[^0]: Source: Table 1

[^1]: Source: Table 10

[^2]: Source: Table 18

